skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fitter, Naomi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In early motor interventions from clinical rehabilitation to physical activity encouragement, one major challenge is maintaining child engagement and motivation. Robots show unique promise for addressing this challenge, but providing robots with new types of autonomous functionality is vital for promoting robot integration and usefulness in the clinic and home spaces. To provide needed autonomy capabilities for GoBot, our assistive robot for child–robot motion interventions, we propose a behavior tree framework. Within our framework, we build two trees: one manually designed based on expert knowledge of the child–robot interaction domain, and a second automatically synthesized and requiring minimal human input and time to construct. We tested each behavior tree withN= 11 children who interacted with GoBot during two behavior tree phases and a stationary-robot control phase. Our results show that both behavior tree phases tended to yield more child motion and significantly higher parent perception of child engagement, compared to the control phase. We showed that GoBot, equipped with our framework, has the potential to encourage movement and interaction in children and that a synthesized tree can be competitive with a manually designed tree. The products of this work can benefit researchers of behavior trees and child–robot interaction. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. Assistive mobile robots can play an important role in supporting individuals with disabilities. While the field of robot control interfaces for individuals with disabilities is growing, there is little work done on such systems for children end users specifically. Accordingly, we pursued the design of an adapted robot control interface for use in child pediatric occupational therapy (OT). Our target end user, a nine-year-old child with cerebral palsy, leveraged the interface to perform instrumental activities of daily living (e.g., play) with a modern mobile manipulator. We used an iterative design process to adjust and improve the interface via input from the participant’s caregivers and occupational therapist, as well as objective participant performance data. Furthermore, we tested the participant’s ability to utilize our interface by creating two testing cases: a control case (in which our participant performed standard ALD/IADL tasks) and an experimental case (in which our participant performed ADL/IADL practice activities more tailored toward the child). Key insights during the process included the need for sensitivity to taking up space on the child user’s existing power wheelchair, the advantages of integrating technologies familiar to the child (e.g., gaming controls, iPads) in our system design, and the potential value of integrating playful mischief (including playful interactions between the child, their caregivers, and their clinicians) as a part of the playbook for pediatric OT. This work can serve to inform and augment new OT strategies for the marginalized population of young children with disabilities. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026